Please make a donation to support Gunter's Space Page.
Thank you very much for visiting Gunter's Space Page. I hope that this site is useful and informative for you.
If you appreciate the information provided on this site, please consider supporting my work by making a simple and secure donation via PayPal. Please help to run the website and keep everything free of charge. Thank you very much.

Mars 1 (2MV-4 #1, 2)

Mars 1 (2MV-4)

MV2-4 was a modified Venera-type spacecraft in the shape of a cylinder 3.3 m long and 1.0 m in diameter. The spacecraft measured 4 meters across with the solar panels and radiators deployed. The cylinder was divided into two compartments. The upper 2.7 m, the orbital module, contained guidance and on-board propulsion systems. The experiment module, containing the scientific instrumentation, comprised the bottom 0.6 m of the cylinder. A 1.7 m parabolic high gain antenna was used for communication, along with an omnidirectional antenna and a semi-directional antenna. Power was supplied by two solar panel wings with a total area of 2.6 square meters affixed to opposite sides of the spacecraft. Power was stored in a 42 amp-hour cadmium-nickel battery.

Communications were via a decimeter wavelength radio transmitter mounted in the orbital module which used the high-gain antenna. This was supplemented by a meter wavelength range transmitter through the omnidirectional antenna. An 8 centimeter wavelength transmitter mounted in the experiment module was designed to transmit the TV images. Also mounted in the experiment module was a 5-centimeter range impulse transmitter. Temperature control was achieved using a binary gas-liquid system and hemispherical radiators mounted on the ends of the solar panels. The craft carried various scientific instruments including a magnetometer probe, television photographic equipment, a spectroreflexometer, radiation sensors (gas-discharge and scintillation counters), a spectrograph to study ozone absorption bands, and a micrometeoroid instrument.

Sputnik 22 was an attempted Mars flyby mission, presumably similar to the Mars 1 mission launched 8 days later. The intended Mars probe had a mass of 893.5 kg. The spacecraft and attached upper stage, with a total mass of 6500 kg, were launched by an SL-6 into a 180 × 485 km Earth parking orbit with an inclination of 64.9 degrees and either broke up as they were going into Earth orbit or had the upper stage explode in orbit during the burn to put the spacecraft into Mars trajectory. In either case, the spacecraft broke into many pieces, some of which apparently remained in Earth orbit for a few days. (This occurred during the Cuban missile crisis. The debris was detected by the U.S. Ballistic Missile Early Warning System radar in Alaska and was momentarily feared to be the start of a Soviet nuclear ICBM attack.)

Mars 1 was an automatic interplanetary station launched in the direction of Mars, with the intent of flying by the planet at a distance of about 11,000 km. It was designed to image the surface and send back data on cosmic radiation, micrometeoroid impacts and Mars' magnetic field, radiation environment, atmospheric structure, and possible organic compounds. After leaving Earth orbit, the spacecraft and the booster fourth stage separated and the solar panels were deployed. Early telemetry indicated that there was a leak in one of the gas valves in the orientation system so the spacecraft was transferred to gyroscopic stabilization. Sixty-one radio transmissions were held, initially at two day intervals and later at 5 days in which a large amount of interplanetary data were collected. On 21 March 1963, when the spacecraft was at a distance of 106,760,000 km from Earth on its way to Mars communications ceased, probably due to failure of the spacecraft orientation system. Mars 1 closest approach to Mars occurred on 19 June 1963 at a distance of approximately 193,000 km, after which the spacecraft entered a heliocentric orbit. Spacecraft and Subsystems.

MV2-4 was a modified Venera-type spacecraft in the shape of a cylinder 3.3 m long and 1.0 m in diameter. The spacecraft measured 4 meters across with the solar panels and radiators deployed. The cylinder was divided into two compartments. The upper 2.7 m, the orbital module, contained guidance and on-board propulsion systems. The experiment module, containing the scientific instrumentation, comprised the bottom 0.6 m of the cylinder. A 1.7 m parabolic high gain antenna was used for communication, along with an omnidirectional antenna and a semi-directional antenna. Power was supplied by two solar panel wings with a total area of 2.6 square meters affixed to opposite sides of the spacecraft. Power was stored in a 42 amp-hour cadmium-nickel battery.

Communications were via a decimeter wavelength radio transmitter mounted in the orbital module which used the high-gain antenna. This was supplemented by a meter wavelength range transmitter through the omnidirectional antenna. An 8 centimeter wavelength transmitter mounted in the experiment module was designed to transmit the TV images. Also mounted in the experiment module was a 5-centimeter range impulse transmitter. Temperature control was achieved using a binary gas-liquid system and hemispherical radiators mounted on the ends of the solar panels. The craft carried various scientific instruments including a magnetometer probe, television photographic equipment, a spectroreflexometer, radiation sensors (gas-discharge and scintillation counters), a spectrograph to study ozone absorption bands, and a micrometeoroid instrument.

The probe recorded one micrometeorite strike every two minutes at altitudes ranging from 6000 to 40,000 km due to the Taurids meteor shower and also recorded similar densities at distances from 20 to 40 million km. Magnetic field intensities of 3-4 gammas with peaks as high as 6-9 gammas were measured in interplanetary space and the solar wind was detected. Measurements of cosmic rays showed that their intensity had almost doubled since 1959. The radiation zones around the Earth were detected and their magnitude confirmed.

Also launched in the same launch window was the similar 2MV-3 Mars lander, which was unsuccessful.

Nation: USSR
Type / Application: Mars flyby
Operator:
Contractors:
Equipment:
Configuration:
Propulsion:
Power: 2 deployable fixed solar arrays, batteries
Lifetime:
Mass:
Orbit:
Satellite COSPAR Date LS Launch Vehicle Remarks
Mars (1c) (2MV-4 #1, Sputnik 22) 1962 βι 1 24.10.1962 Ba LC-1/5 P Molniya
Mars 1 (2MV-4 #2, Sputnik 23) 1962 βν 3 01.11.1962 Ba LC-1/5 Molniya

Cite this page: